Massive Connectivity with Massive MIMO-Part I: Device Activity Detection and Channel Estimation

نویسندگان

  • Liang Liu
  • Wei Yu
چکیده

This two-part paper considers an uplink massive device communication scenario in which a large number of devices are connected to a base-station (BS), but user traffic is sporadic so that in any given coherence interval, only a subset of users are active. The objective is to quantify the cost of active user detection and channel estimation and to characterize the overall achievable rate of a grant-free two-phase access scheme in which device activity detection and channel estimation are performed jointly using pilot sequences in the first phase and data is transmitted in the second phase. In order to accommodate a large number of simultaneously transmitting devices, this paper studies an asymptotic regime where the BS is equipped with a massive number of antennas. The main contributions of Part I of this paper are as follows. First, we note that as a consequence of having a large pool of potentially active devices but limited coherence time, the pilot sequences cannot all be orthogonal. However, despite this non-orthogonality, this paper shows that in the asymptotic massive multiple-input multiple-output (MIMO) regime, both the missed device detection and the false alarm probabilities for activity detection can always be made to go to zero by utilizing compressed sensing techniques that exploit sparsity in the user activity pattern. Part II of this paper further characterizes the achievable rates using the proposed scheme and quantifies the cost of using non-orthogonal pilot sequences for channel estimation in achievable rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive Connectivity with Massive MIMO-Part II: Achievable Rate Characterization

This two-part paper aims to quantify the cost of device activity detection in an uplink massive connectivity scenario with a large number of devices but device activities are sporadic. Part I of this paper shows that in an asymptotic massive multiple-input multiple-output (MIMO) regime, device activity detection can always be made perfect. Part II of this paper subsequently shows that despite t...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Large-Scale Antenna-Assisted Grant-free Non-Orthogonal Multiple Access via Compressed Sensing

Support massive connectivity is an important requirement in 5G wireless communication system. For massive Machine Type Communication (MTC) scenario, since the network is expected to accommodate a massive number of MTC devices with sparse short message, the multiple access scheme like current LTE uplink would not be suitable. In order to reduce the signaling overhead, we consider an grant-free m...

متن کامل

Optimal Non-coherent Data Detection for Massive SIMO Wireless Systems with General Constellations: A Polynomial Complexity Solution

Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection proble...

متن کامل

Transmit Signal Design for MIMO Radar and Massive MIMO Channel Estimation

Duly, Andrew Jason Ph.D., Purdue University, December 2013. Transmit Signal Design for MIMO Radar and Massive MIMO Channel Estimation. Major Professors: David J. Love and James V. Krogmeier. The widespread availability of antenna arrays and the capability to independently control signal emissions from each antenna make transmit signal design increasingly important for radar and wireless communi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.06438  شماره 

صفحات  -

تاریخ انتشار 2017